Mold

Interesting Article they most may have seen, but worth repeating.

Hope this helps some.

Mold: The Whole Picture
Pt. 2, Assessment of Mold Problems

by Ellen McCradyPart 1 (v.23 #4) emphasized the preservation community’s need for better contact with fields that carry out research and generate information about mold. These fields include medicine, public health, agriculture, indoor air quality, building construction, and historic preservation, in addition to mycology. The history and nature of mold were discussed, and several websites and publications were cited.
The plan for this series does not include a review of preservation literature or procedures on mold, because the scope is so broad already. -Ed.
Defining the Problem

The first signs of a mold problem are often deceptive: a moldy smell in part of a building, tired employees who are said to be suffering from colds or allergies, or visible mold growths on walls or books in certain locations. They are easy to ignore and hard to interpret, so health and building problems may not be investigated right away, although affected items may be cleaned or fumigated. (Note: Mold problems from fire or water disasters are not considered here, because they usually cause explosive mold growth, rather than typically chronic or recurring growth.)
In minor cases, formal inspections are of course not called for. The 1994 edition of the Guidelines on Assessment and Remediation of Stachybotrys Atra [Chartarum] in Indoor Environments says,
"The criteria for conducting an initial inspection include:

  1. presence of visible mold;
  2. evidence of water damage;
  3. symptoms which are consistent with an allergic or toxic response to Stachybotrys atra (e.g., respiratory illness, rashes and chronic fatique) and are severe enough as judged by medical documentation to result in lost work days."

A new edition of this guide, which will apply to more species, is in preparation.
If the smell or visible mold growths are seen as indicators of a health problem, institutions and businesses may call in indoor air quality specialists, who will look for evidence of bacteria, viruses and other microorganisms in addition to mold. They will check for deficiencies in the HVAC (heating, ventilating and air conditioning) system that may be bringing polluted air into the building, or spreading the mold to uninfected areas.
However, indoor air quality people, industrial hygienists and environmental health professionals may not get the whole picture because they are trained mostly to monitor conformity to government standards for work-related exposures, and there are no standards for mold exposure.

Teamwork Recommended
It takes a number of specialists from different fields to do an adequate assessment of a mold problem in a building. The assessment should be thorough enough to justify an expensive remediation, if that is called for (cleaning, restoring, and rebuilding); and the findings have to be credible, if they are intended for possible use in a lawsuit.
Unfortunately, many architects, builders and building engineers do not understand how they are contributing to the modern problem of illness among residents or staff and the decay of building materials. The “tight houses” first built during the oil shortage of the early 1970s do conserve fuel, but they also create ideal homes for mold.
It is no coincidence that the 1993 Workshop on Control of Humidity for Health, Artifacts, and Buildings gave the title “Bugs, Mold and Rot” to both the workshop and the proceedings. The workshop following that one was held last summer during the same week as the 1999 AIC conference. Those proceedings will be available, probably in 2000, from the National Institute of Building Sciences (202/289-7800, fax 202/289-1092).
Almost every writer on this subject recommends a team approach. A health specialist has to be involved, because the effects of exposure to mold are so variable, and reactions to other microorganisms and non-biological agents are also possible. Biological agents often encountered in such investigations include fungi, bacteria, amebae, and viruses; allergens from plants, microorganisms and animals; toxins from bacteria and fungi; and microbial volatile organic compounds (MVOCs). There should be a specialist who knows how to find and identify them, estimate the risk they pose, and do the necessary lab work. Finally, the investigators should include, or be in touch with, someone who knows about building structure and systems, especially of the building in question.

An investigation strategy is outlined on p. 2-3 (ch. 2, p. 3) in Bioaerosols: Assessment and Control, the manual published in 1999 by the ACGIH (American Conference of Governmental Industrial Hygienists). First comes the health assessment of people in the building, then the bioaerosol assessment, and the building assessment. Then hypotheses are formulated about what could be going on, because many factors have to be identified, at least provisionally, before the data can be gathered efficiently. The sampling methods, health precautions, places to look, possible causes, and conditions to correct are all determined or at least influenced by the species of organisms involved.

Next the hypotheses are tested by gathering data about the environment, bioaerosols present, and medical aspects, and by consulting experts as needed. If all the data checks out, the investigators are ready to make recommendations on moisture control, cleaning, repair and so on. If it does not check out, then the investigators have to go back to Square One. A Detective Story

Sometimes the search for the cause of complaints is not easy. One such case was reported at the 1998 Bioaerosols Conference in Saratoga Springs by Joseph Fedoruk, Steven Uhlman and Dean B. Baker (“Microbial Contamination of a Ventilation System Detected by Microbial Volatile Organic Compound [MVOC] Analysis”). A six-story building constructed in 1970 was given an award in 1997 by ASHRAE for its healthy environment; however, in 1995 the HVAC system had been re-engineered to increase the supply of fresh air. By 1997, the year of its award, it was already a sick building. People in one end of the building were feeling ill and complaining periodically of chemical odor.

Fedoruk’s company was asked to look at the building, but it appeared to have no problems: they found consistently low counts of viable molds, total spores and atmospheric bacteria, and good temperature and relative humidity. They took samples indoors, outdoors, and in both the complaint areas and non-complaint areas. There was no visible mold growth anywhere, although MVOC concentrations were much higher in the complaint area. In order to get to the bottom of it, Fedoruk (who is a medical doctor) saw the people as a clinician. Perhaps this inspired him to follow the trail of MVOCs upstream to see where they were coming from; he doesn’t say so in the abstract of his paper, the source of this story.

Then they inspected the HVAC system and found something that had been overlooked in previous building investigations: mist from a chiller tower that was being drawn into a principal air intake duct only 30’ away, along with mist from a condensate pan beneath the chiller tower. The intake duct was damp; still, no mold growth was visible from the outside.
When they opened up the ducts, however, they found mold, yeast and bacteria colonies inside—not on the duct surface, but on the joint adhesive. That was enough to explain the contaminated air inside. (One is reminded of the original incidence of legionnaires’ disease, where the hotel’s air intake was also located close to the cooling tower. The airborne bacteria from the condensate pan there were also sucked up by the air intake and delivered to the hotel guests inside.)

Fedoruk concludes that MVOC analysis provides a way to detect ventilation system contamination when neither visible mold growth nor measurable bioaerosols (spores, etc.) are present to help the investigator.
Sometimes, if there is no other way to tell where the main source of the mold is, then parts of the walls, ceiling or floors have to be removed to inspect hidden parts of the structure. This is, of course, destructive but sometimes necessary. In England and Denmark, trained dogs called “rothounds” are used to find actively growing dry rot in a nondestructive way. These dogs can detect a certain MVOC that is produced by Serpula lacrymans, the dry rot fungus, from several meters away; they can cover 20-50 rooms an hour and also search small areas inaccessible to humans. David Miller says the surface area of visible mold is the best measure of exposure, though it is hard to determine accurately. Colony-forming units from airborne samples alone have no value. In order to determine the existence of hidden fungal growth in buildings, the method of taking air samples described in the American Industrial Hygiene Association’s Field Guide for the Determination of Biological Contaminants (1996) is valuable, because it provides a comparison of fungal species inside versus species outside. Other tools are being developed to measure individual exposures to fungi for research studies. Aside from the AIHA manual, a recent review of the methods for assessing fungal exposures can be found in: Dillon, H.K., J.D. Miller, W.G. Sorenson, J. Douwes and R.J. Jacobs (1999). “A review of methods applicable to the assessment of mold exposure to children,” Environmental Health Perspectives 107 (s.3): 473-480.
Sampling

Before sampling is done, a plan has to be drawn up specifying which microorganisms will be looked for, where they might be found, likely sources, how the organisms will be located and quantified, and when and where samples will be collected.

There are many kinds of volumetric air samplers, among which the Andersen sampler is frequently mentioned. They draw in air from the room and discharge it with the bioaerosols onto a filter or sticky surfaces or agar plates.

Air samples can be used to get a count of “colony-forming units” (cfu, which are bacteria and fungi that start growing on the culture media) per cubic meter of air. If the colonies are easy to identify, the counts can be related to individual species. The cfu of mixed species may also be used as a broad index of microbial growth. When species are mixed, however, one or more species may be suppressed on the culture plate by competitors.

A well-known but unreliable way of taking a sample of bioaerosols in an area is to set out culture plates and let the spores and other bioaerosols settle on them. This method is rarely used today, because some organisms do not send out many spores, or have spores that are too light to settle out, or that die soon after they leave the colony.

The mold count can be increased hundreds or thousands of times by “aggressive sampling”—that is, by stirring up the air with a fan, or pounding on the wall. Higher counts are also had when there is traffic through a room, such as a schoolroom at the beginning or end of the day. So a great many facts and observations have to be recorded, and samples have to be taken by several different methods, in order to get reliable data.

There are no standard methods for getting information on airborne microorganisms, according to Brian Flannigan (in his paper," Guidelines for Evaluation of Airborne Microbial Contamination of Buildings," given at the 1994 Saratoga Springs conference). Assessment of only viable microorganisms may reveal as little as 1% of the total microbial airborne load, he says.

Samples of moldy materials (bulk samples) can be taken and pressed directly onto an agar plate, then cultured. Results are counted as colony-forming units per gram of material.

Samples of surface growth can be taken with sticky tape or a sterile swab, then transferred to a plate. This is a useful method for hard surfaces like the inside of an air duct. An open and multidisciplinary approach is needed to make a complete, fast and efficient diagnosis of hidden mold problems in buildings. … [In the case of a Stachybotrys chartarum contaminated building], many critically important steps … are required to make your diagnosis a success story.

First, trust the occupants: if there is a complaint, there is a cause, even if it’s not obvious. Find it! Second, a thorough inspection of the premises and their ventilation is mandatory. Keep in mind that mold needs water and porous organic materials that can be hidden in the structures and not directly visible. Almost any building material can harbor fungal growth, if the available water activity is sufficient. Use the proper tools to find it. Third, if sampling is needed, be versatile: no sampling method is perfect. Adapt the sampling strategy to the situation and use an accredited mycology lab to count and identify fungi in your samples. Bear in mind that you are dealing with toxigenic mold and, depending on the extent of the contaminated surface, take proper action to keep occupants away from it and protect their health. Finally, after putting together all the data gathered in the field, always communicate it in a simple, straightforward way, with affordable step-by-step remedial: don’t forget that people want to get rid of their problem, not make their lives more complicated.

Claude Mainville, Sr. P. Eng.
President, Natur’air - Kiwatin Inc.
Montreal, QC H2L 1M1, Canada [Reprinted with the author’s permission from the abstract of his paper, "Learning from Stachybotrys chartarum: How to Find Hidden Mold in Buildings,"given at the 1998 Bioaerosols Conference in Saratoga Springs, NY.]
Media and Methods

Opinions differ about which culture media work best.
A common medium used for fungi is malt extract agar. Xerophilic fungi like Aspergillus penicillioides grow better on a medium with a water activity (Aw) reduced by addition of salt, sugar or glycerol. The incubation temperature has to be within a certain range (18°C to 25°C for most fungi and as high as 55°C [99°F] for thermophilic species).

Sometimes, when time is short, polymerase chain reaction (PCR) will be used instead of culturing, because results can be had in hours rather than days or weeks, and identifications are certain and specific. PCR is especially good for identifying hard-to-grow, slow-growing and nonculturable organisms.

Even after samples are taken and cultures are grown, the findings have to be interpreted before remediation can begin, even for a small area or building. Interpretation may only consist of an individual’s weighing the evidence mentally, or consulting the relevant literature just to be sure. For a large building, however, all possible alternatives to each finding must be considered. There is a whole chapter on it by Harriet Burge et al. in the ACGIH book, Bioaerosols: Assessment and Control, but we will not go into that step here, except to warn that sometimes other microorganisms or even inorganic materials or sources outside the building can be at least partly responsible for symptoms of occupants. And toxins released by mold may greatly increase the effect of toxins from other sources. Which Mold Species are Most Common? Most Toxic?

Opinion as to the most common species varies. A chapter on indoor mycology in North America (Building Mycology, ch. 11) says the most common fungal genera found in houses (present in 10 to 100% of samples) are
Cladosporium, Penicillium, Alternaria, Streptomyces and Epicoccum. Brian Flannigan, who gave a paper, “Guidelines for Evaluation of Airborne Microbial Contamination of Buildings,” at the 1994 Saratoga Springs conference, says that the most common indoor molds are likely to be species of Cladosporium, Penicillium, Aspergillus and Eurotium. Fausta Gallo has identified Aspergillus and Penicillium as the most common species in libraries (1986, ICCROM).

Nominations for most toxic species also vary. Aspergillus fumigatus and Stachybotrys are two examples that Flannigan offers of moisture-loving toxic molds that can flourish indoors. He cites a Canadian guide on office buildings, which says that “Pathogenic fungi such as Aspergillus fumigatus, Histoplasma and Cryptococcus should not be present in significant numbers. The persistence of toxigenic molds such as Stachybotrys atra and Aspergillus versicolor in significant numbers requires investigation/action.”

Jeffrey Cooper and J. Michael Phillips listed the following five species as most toxic in a recent paper: Aspergillus flavus, A. fumigatus, A. versicolor, Fusarium moniliforme, and Stachybotrys chartarum. They say, “The detection of any toxigenic fungi indoors is considered unacceptable from a human health risk perspective. The confirmed presence of [any of these five species] requires urgent risk management decisions by building owners.” (“Assessment and Remediation of Toxigenic Fungal Contamination in Indoor Environments,” First NSF International Conference on Indoor Air Health, May 3-5, 1999, Denver, CO)

Several authors have pointed out that each type of building (homes, schools, office buildings) tends to have its own set of typical mold species. This is probably because each building type typically has its own characteristic “amplifiers” or sources and conditions, such as mattress dust and humid bathrooms in homes, leaky roofs and defective plumbing in schools, and poorly maintained HVAC systems in office buildings.
The mold counts found on the weather page of many newspapers have little to do with the indoor exposure to toxic mold spores. Outdoor molds are not normally a threat to human health. Many of them live on plant leaves or in forest litter, and are not found in great concentration except in ooutdoor manmade facilities like compost areas, dumps, and sawmills.

Marcel :slight_smile: :slight_smile:

Thanks Marcel; very good article.

Gary
hsspropertyinspection.com

Marcel:

As you may have seen by reading this article, the field is quite involved and complicated. That is why C. Connell really puts down the Pro-lab training/reports.

I was quite lucky to have IAQ training in 1991 which included the above mentioned David Miller. (Phd. Mycologist with Agriculture Canada) Just a few months before I called Harriet Burge (whom I call Miss Mould; just google her name + mold and see how many hits you get) when she was still at University of Michigan. To my surprise, she and I talked for close to 2 hours about biological sampling and whether I would bring it into our IAQ services in the company I was managing at the time. In the end, I decided not to…it would involve much more advanced training than we could afford time wise.

There has been a rush to mould testing in the past 5-10 years due to the insurance and litigation monies that have been floating around, hence, the phrase “Mold is Gold”. Here are comments from some common sense consultants in the field:

•• John Bower, owner, The Healthy House Institute, Bloomington, Ind.:
"The worst thing that has happened to the indoor air quality marketplace in the last year or so is mold. This is because much of the media coverage is designed to sensationalize the topic and frighten the public - so much so, that the word ‘mold’ always seems to be preceded by the adjective ‘toxic’. Thus*, homeowners and building managers are scared to death** of any minor infestation that might possibly be toxic mold, and they often ignore other health issues, such as combustion byproducts, VOC’s, second-hand tobacco smoke and poor ventilation."*

•• Dr. Joseph Lstiburek, president, Building Science Corp., Westford, Mass.: "The biggest news is the insurance people getting out of covering mold claims. This is great news because the easy money is gone. Now we are dealing with real money——yours and mine; insurance money was always viewed as someone else’s. Now, attorneys are wary of taking mold cases on contingency. They actually have to work for their money" (and you still have to pay them whether you win or lose- our comment)

"If you see it or smell it, you do not have to test for it. It is more important to get rid of the mold rather than spend a lot of money trying to find out more about it***.***" (by sampling and identifying the species of mould- our comment) (Website: www.buildingscience.com)

•• Larry D. Robertson, president and CEO, Mycotech Biological Inc, Jewett, Texas: "As industry leaders, our failure to have in place an appropriate outlet for public knowledge and education has resulted in* gross misrepresentations and misunderstandings of basic Indoor Air Quality fundamentals." ***

Why Air Sampling Results Are Undependable
By Jim H. White, Former senior researcher at CMHC
The problem with most air sample methodologies is that they take a “snapshot” of a highly variable measurement. Several studies have shown that the number of viable spores in a building, at a given location, varies by orders of magnitude over a few days to weeks. This is due to changes in weather (and the way air moves through the building), changes in colony condition (moisture and food availability, energy available for sporulation, and so on), etc. Sampling outcomes are also highly dependent on the specific location of the sampling, especially if the mould is growing.”

MacGregor Pearce:
“There is almost a hysterical level of panic about mould in our homes and buildings. At least 20 per cent of the biological activity on earth is fungal in origin. Wherever we go, moulds are not far away. While some fungal species generate toxic compounds, it is safe to say that all living creatures must strike a balance with fungal growth in order to survive. If decay organisms as a group were poisonous to other life forms, they would long ago have killed off their food source and vanished from the earth. On the other hand, the fungi will have our way with us soon enough and there is no need to rush things.”

This last quote is from a current article in a free online building science publication called “Building Envelope Forum”. Always the best contributing here!!

http://www.buildingenvelopeforum.com/sample.htm

Hi. Brian

Another interesting article on the subject.

http://www.pdoyle.net/Toxic_Mould.html

Marcel :slight_smile: :slight_smile:

Great info!